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Abstract—Traffic state prediction is essential in Intelligent
Transportation Systems for surveillance, management, and daily
commuting. For developing high-accuracy prediction models,
real-world traffic state datasets are necessary for training model
parameters and evaluating prediction results. However, limited
by the existing traffic collection devices, most of the current
open datasets for traffic state prediction cannot obtain accurate
traffic flow information. In contrast, some datasets directly use
detection devices in freeway systems, so they cannot reflect
complex urban traffic states. Therefore, a dataset from advanced
devices that can record the flow from point to point on an urban
road network attracts more attention and drives the progress
of research on traffic state prediction models. To deal with the
above issues, we introduce a Suburban Traffic Flow dataset using
Geomagnetic sensors, or STF-G dataset, constructed for traffic
flow prediction. The STF-G dataset consists of 2.5 billion vehicle
driving scenarios and 319 corresponding geomagnetic sensors.
The data was collected over 20 months and processed with two
regional road graphs. We also do the Benchmark experiments in
STF-G for analyzing and evaluating the performance of graph
neural network models in traffic flow prediction and compare
them to the other datasets with the same baseline.

Index Terms—Geomagnetic Sensor, Dataset, Benchmark, Traf-
fic State Prediction, Graph Neural Networks

I. INTRODUCTION

Traffic state prediction is a critical part of Intelligent Traffic
Systems (ITS), which is essential in government and citizens’
traffic surveillance, management, and analysis. To develop an
advanced prediction model, a dataset, which can reflect the
real-world traffic state, is indispensable for training model
parameters and evaluating results. Especially with the wide
application of Graph Convolution Networks (GCN) in traffic
forecasting [1], the corresponding road connection is also
needed in the traffic state datasets.

However, getting an accurate and detailed traffic state on
a city scale is not easy, even in modern society. Although
researchers have tried to construct several open datasets for
traffic prediction tasks, they have respective problems in
reflecting real urban traffic states, which can be concluded as:

(1) Data acquisition. As shown in Figure 1, there are several
types of sensors to collect traffic state. Vehicle devices with
the Global Positioning System (GPS) could acquire real-time
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Fig. 1: Comparison of Device

location so that they can be used to calculate traffic state.
However, not all vehicles have GPS devices, nor can all GPS
data be aggregated because of privacy issues. Hence traffic
flow collected by GPS could be a sampling of real-world
situations. On the other hand, surveillance cameras can capture
overall road conditions, including cars and pedestrians, then
traffic flow can be counted through object detection methods in
computer vision. It cannot be recognized with 100% accuracy
because of challenges such as varying perspectives, lighting
conditions, and sources of occlusion. Only loop detectors
and geomagnetic sensors can catch the most real traffic state
information as they detect each vehicle’s movement directly.

(2) Road network coverage. In Table I, traffic state datasets
widely used in traffic prediction research are listed. As ana-
lyzed above, data collected by loop detectors can reflect more
real traffic states than GPS and cameras. Thus, the representa-
tive datasets provided by Caltrans Performance Measurement
System (PEMS) [2] are the first choice in many studies.
However, those loop detector datasets are based on the freeway
system and cannot cover a city’s regular road network, which
has much more turns, intersections, and traffic signals. There-
fore, models can achieve good results at loop detector datasets
but can hardly be transferred to real-world applications.

To address these shortcomings, we introduce a Suburban
Traffic Flow dataset using Geomagnetic sensors, or STF-G,
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TABLE I: Comparison with Other Traffic State Datasets

Dataset Location Road Type Device Features Time Period Time Interval
SZ_TAXI [3] Shenzhen, China Urban Roads Taxi Trajectory Speed 1/1/2015 - 1/31/2015 15 min
METR_LA [4] Los Angeles, USA Freeways Loop Detectors Speed 1/3/2012 - 30/6/2012 Smin
LOOP_SEATTLE [5], [6] Seattle, USA Freeways Loop Detectors Speed 1/1/2015 - 12/31/2015 Smin
PEMS-BAY [7] San Francisco, USA Freeways Loop Detectors Speed 1/1/2017 - 1/30/2017 5 min
PEMSDO8 [8] San Bernardino, USA Freeways Loop Detectors Flow, Speed 7/1/2016 - 8/31/2016 5 min
PEMSD04 [8] San Francisco, USA Freeways Loop Detectors Flow, Speed 1/1/2018 - 2/28/2018 5 min
STREETS [9] Chicago, USA County Roads Traffic Cameras Flow 10 weeks between 2018 - 2019 5 min
NYCTAXI_DYNA New York, USA Urban Roads Taxi Trajectory Flow 1/1/2020 - 3/30/2020 60 min
STF-G Shenzhen, China Urban Roads ~ Geomagnetic Sensors Flow 1/1/2019 - 8/31/2020 5 min

to serve as a benchmark for traffic state prediction tasks. This
dataset includes the traffic state in the temporal dimension
and incorporates the sensor-based graph representing a spatial
dependency, which is suitable for easily developing and eval-
uating graph-based models. The contributions of this paper
include the following:

« We introduce a novel Geomagnetic Sensor dataset called
STF-G, which consists of more real-world and compre-
hensive traffic data with corresponding Spatio-temporal
information.

e« We introduce a benchmark for traffic flow prediction
models, especially the state-of-the-art graph-based mod-
els, that evaluates the performance and robustness of each
model in suburban scenarios.

II. RELATED WORK

Real-world traffic reporting is an essential issue in traffic
information collection. Many traditional traffic collection de-
vices acquire state indirectly, committing to image identifica-
tion and data imputation. Instances consist of traffic cameras
that detect and count vehicles using the computer vision
method, such as STREETS [9] and GPS which interpolate
the trajectory by statistical samplings after the map matching
method, like the Fast Map Matching [10], such as SZ_TAXI
[3]. Furthermore, the installation of loop detectors creates
massive damage to roads. However, these devices are limited
in terms of sight, visibility, missing data, and difficulty of
the deployment factors, which prevents recording the complete
real-world information of each passing vehicle.

Some recent research work [11] has begun to pay atten-
tion to geomagnetic sensor applications, especially vehicle
detection, vehicle classification, and vehicle counting. The
geomagnetic sensor can detect the change in the surrounding
geomagnetic field caused by each passing vehicle. Therefore,
it can accurately record vehicle length and passage time which
can acquire the traffic state easily. In addition, the installation
of the geomagnetic sensor is quick and convenient. These
works apply geomagnetic sensors to collect traffic information
but do not fully utilize data on state prediction, and their
geomagnetic sensor datasets are very limited [12].
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III. SUBURBAN TRAFFIC FLOW USING GEOMAGNETIC
SENSORS

In this section, we present a dataset STF-G, which reflects
Suburban Traffic Flow using Geomagnetic sensors, and explain
what features are different from other traffic datasets for flow
prediction tasks.

A. Data Collection

Shenzhen is a major sub-provincial city in China, with more
than 17,633,800 resident population. Geomagnetic sensors are
distributed on the roads of every district in Shenzhen. Sensors
in each lane can detect the direction of vehicles to avoid
roads overlapping with multiple lanes and the difficulty of
2D maps representing. In addition, the sensor can induce
changes in the geomagnetic field to record the length and
type of vehicles passed. The types in STF-G include extra-
large cars, large cars, mid-cars, and micro-cars. Thus, the flow
in passenger car unit (PCU) method [13] can represent more
scientific conditions on the road and the standard as follows
the equation:

Flow = 4.0x Extra+2.5%x Large+1.5x Mid+1.0x Micro

(1)
It uses the coefficient to weigh each type of vehicle, including
combination, large-sized, middle-sized vehicles, and passenger
cars, to result in a more reasonable traffic flow.

At the time of data collection for this work, there are 319
distinct sensors across Shenzhen for a total of 2.5 billion
logs of vehicles. The STF-G is extracted every 5 minutes for
20 consecutive months from 1/1/2019 to 31/8/2020 among
the 129 million vehicles passed. To benchmark, centers of
two districts between Nanshan and Futian with the most
concentrated traffic flow in Shenzhen of 50 distinct sensors
in total are selected from 1/6/2019 to 30/6/2019. The missing
rate is lower than 10.0% and linear interpolation is applied. In
general, STF-G presents great reality in the direction of the
roads, vehicle classification, traffic congestion, etc.

B. Sensor-Based Graph

The sensor-based graph aims to generate a spatial graph
through sensor distribution and road connection. Most current
mainstream state prediction models extract spatial dependency
through graph structures. More and more traffic state predic-
tion models apply graph convolution to operate the irregular
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(b) Sensor Graph in Futian

(a) Sensor Graph in Nanshan

Fig. 2: Sensor Graph

spatial connection of road networks. However, several traffic
datasets only provide the traffic state of different roads in the
time series, lacking the graph-structure data.

TABLE II: Statistics for Each District Graph.

Nanshan | Futian
# Vertices 19 31
# Edges 62 96
Area(sq. km) 46.05 48.42

Thus, two sensor-based graphs of STF-G, as shown in
Figure 2, are manually established based on the connection
relationship among the sensor points in real urban roads where
they are located. The exact number of nodes, edges, and
corresponding spatial area of each graph are listed in Table II.

C. Data Comparative Analysis

In order to give a clear image of the advantage of STF-
G, we do the comparative analysis between STF-G and other
traffic state datasets of different sensor types.

Flow Comparison between STF-G and GPS. We selected a
dataset collected by taxi-GPS in Shenzhen for comparison. For
these two datasets, some roads located in Futian District are
selected to compare one-month traffic volume. As Figure 3a
indicates, even taking logarithm 10 for flow, the volume of
STF-G on each road is much larger than the GPS dataset.

Flow Comparison between STF-G and Camera. We se-
lected the STREETS [9] collected by cameras in Chicago
for comparison. Because the regions of STREETS and STF-
G are different, instead of comparing flow directly, the ratio
of daily flow in each dataset and the local population in
the first week of June 2019 is calculated as a comparison
reference. In Figure 3b, the ratios indicate that each day’s flow
information of STF-G (Nanshan and Futian) is more complete
than STREETS (Buffalogrove and Gurnee).

Graph Complexity Comparison between STF-G and Loop
Detector. The loop detectors in most datasets are on freeways
instead of urban roads, which cannot reflect the complex
condition in urban. To visualize the spatial difference, We
select the METR_LA [4] and PEMS-Bay [7] and represent the
distributions of their detectors. According to the comparison
between Figure 2 and Figure 3c 3d, it is obvious that although
there are hundreds of sensors (small red dots) in METR_LA
and PEMS-Bay, they are all concentrated on a few freeways
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which can be simplified into graphs with only several nodes
(big red dots) and edges (blue lines). While our STF-G
distribute on major urban roads in central Shenzhen can reflect
a more real and multiplex road network.

IV. BENCHMARK TASK

In this section, we evaluate the performance of models,
including statistical algorithms, time-series deep learning al-
gorithms, and graph-based nueral networks on STF-G.

A. Basic Settings

The Adam [14] is used for optimization with an initial learn-
ing rate of 0.0001. The sub-datasets Nanshan and Futian are
selected and divided into 70% for training, 10% for evaluation,
and 20% for testing. Evaluation of the model performance
through three metrics: mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean squared
error (RMSE). The Benchmark evaluates the classical methods
including HA [15] and SVR [16], time-series deep learning as
GRU [17], LSTM [18], Seq2Seq [19] and advanced graph-
based models as AGCRN [20], Graph Wave Net [21], GTS
[22] and DCRNN [7].

B. Results Evaluation

Table III compares the performance of our selected models
for 15 minutes, 30 minutes, and 60 minutes ahead of predic-
tions on Nanshan and Futian sub-datasets. According to the
evaluation of the Tabel III, it can conclude that: (1) Generally,
essential deep learning with only temporal dimension models
presents a better performance in the prediction task than non-
deep learning statistical methods. HA and SVR conclude pre-
liminary results and can only work on short-term prediction.
Its performance would degenerate as the step increases. Their
multi-step results point to drawbacks in long-term prediction
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TABLE III: Results of Each Model on Nashan and Futian Datasets

Nanshan Futian

Model 15 min 30 min 60 min 15 min 30 min 60 min
MAE MAPE RMSE | MAE MAPE RMSE | MAE MAPE RMSE | MAE MAPE RMSE | MAE MAPE RMSE | MAE MAPE RMSE
HA 27.05 2495%  59.95 | 27.05 24.95%  59.95 | 27.05 2495%  59.95 | 20.19 23.76% 3539 | 20.19 23.76% 3539 | 20.19 23.76%  35.39
SVR 3536  31.52% 6770 | 37.71 33.67% 7250 | 43.63 40.11%  84.00 | 23.95 29.45%  40.79 | 26.44 31.26%  48.11 | 32.60 37.11%  63.44
GRU 18.69 18.18%  31.92 | 19.61 18.69%  34.02 | 21.34 19.98%  38.16 | 17.11 22.75%  29.02 | 1743 2279%  29.87 | 18.12 23.07%  32.66
LSTM | 19.89 19.38% 3400 | 20.58 19.77% 3570 | 22.04 20.94%  39.01 | 17.60 23.01%  30.69 | 1791 2322% 3142 | 18.69 23.73%  33.79
Seq2Seq | 17.95 17.66% 3052 | 18.82 1825%  32.54 | 2059 1991% 3644 | 1648 21.95% 27.89 | 1688 2223%  29.03 | 17.86 22.97%  31.95
GTS 1737 17.66%  31.37 | 19.06 19.09% 3421 | 21.75 21.41% 3913 | 1477 18.61% 2489 | 1570 19.52% 27.06 | 1730 21.07%  31.09
AGCRN | 17.09 17.76% 3017 | 1840 19.11%  33.04 | 2045 18.60% 37.64 | 1529 21.69% 2640 | 1601 2071% 28.08 | 17.50 2223%  31.52
GWNET | 17.14 1627% 3054 | 1816 17.31% 3249 | 2054 1890% 37.50 | 15.13 19.84%  25.18 | 1592  20.23 27.19 | 1751  20.60%  30.90
DCRNN | 1680 15.61% 3022 | 18.19 1646% 3256 | 20.51 18.49% 3693 | 1476 18.30% 2470 | 1569 19.23%  26.63 | 1729 20.96%  30.40

tasks. (2) The three RNN-based deep learning models, GRU,
LSTM, and Seq2Seq, have the same good performance in
predicting all time steps. Such results again demonstrate the
importance of time series in traffic state forecasting. (3)
Almost all graph-based models achieved better performance
than traditional methods and time-series models on all metrics,
proving that adding spatial information would bring substantial
performance improvements. (4) Although the performance of
the models depended more or less on the dataset, the scores
of DCRNN and GWNET on most of the datasets ranked in
the top two. It also proved their robustness and versatility in
traffic prediction tasks. GWNET and DCRNN utilize diffusion
convolutional networks, which can identify the correlation of
devices on the road in different directions by themselves.

In addition, the robustness is further analyzed by referring
results provided by Libcity [23] on several public datasets.
As a result of the benchmark for PEMS04 in Libcity, the top
two are AGCRN and GWNET, while GWNET also got top
scores at our STF-G as analyzed above. It demonstrates the
great robustness of GWNET, or self-adaptive/learnable graph
models, on traffic prediction task.

V. CONCLUSION

In this work, we propose a novel STF-G dataset, which
incorporates a more real-world and comprehensive flow state.
It avoids the privacy issues of GPS collection, the limited
sight of the camera collection, and the outdated loop detector.
Furthermore, to evaluate and analyze current research on traffic
state prediction, we additionally provide a benchmark for state
prediction models with STF-G.
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