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Abstract—A core component of the Intelligent Transportation
System (ITS) is road network, which forms the most basic trans-
port infrastructure, and becomes widely applied in many traffic
applications. In most traffic models, the spatial representation
of road network is learned only through static graph connection
while dynamic driver preference and traffic conditions in the real
world are ignored. Therefore, in this paper, a novel trajectory-
based road network representation is proposed. By mining vehicle
trajectories, our proposed method can learn dynamic route choice
through embeddings of each road in a next-hop prediction model.
Then road correlations are calculated by the embeddings to
build a latent correlation graph that can be applied in various
traffic-related applications. Extensive experiment results prove
the effectiveness and rationality of our proposed approach.

Index Terms—Trajectory, Road Network, Road Correlation,
Representation Learning

I. INTRODUCTION

With the great development of modern cities, the rapid
growth of population and the acceleration of urbanization
has made transportation systems essential infrastructure. In
the meantime, transportation systems are becoming more
and more complex, which causes great pressure on urban
traffic management. As a result, it is important to develop
the Intelligent Transportation System (ITS) [1] for efficient
traffic management. A core component of ITS is the road
network, which forms the most basic transport infrastructure,
and becomes widely applied in many traffic applications.

Considering its importance, lots of methods are developed
to characterize and model road networks. Early research
mainly adopt graph structure on roads. To represent a road
network, a graph is constructed where each node in the
graph stands for a road segment, and edges represent the
relationship between them. In most traffic models, the edges
are pre-defined, such as road connectivity. It cannot capture
the long-range dependency among roads and only reflects the
structural characteristics. Recent studies start to leverage graph
representation learning techniques to obtain representations
over road networks. Representation learning methods have
the ability to extract the underlying characteristics of road
networks. However, considering dynamic driver preference
and traffic conditions in the real world, it is not easy to design
an effective representation learning framework. The traffic
condition in the real world is much more complicated rather

† Corresponding Author.

Fig. 1: Learn road correlations from trajectories.

than simple road connections. For example, the main roads
in a city are often congested during peak hours. Although
it is usually the shortest path to travel through main roads,
commuters will probably prefer a father but clearer path. That
is, simply considering the structural information is not enough
to characterize the transfer preference by real drivers and
pedestrians. Despite that it is impractical to collect all the
traffic patterns, the vehicle trajectories reflect them well and
thoroughly.

Trajectories will provide vehicle transition information, and
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the relationship between roads can be better captured by
learning real-world road correlations from huge vehicle paths.
Therefore, we take advantage of trajectories and design a road
network representation learning framework. In this paper, our
main purpose is to design a general method to extract road
correlations through trajectories. As shown in Figure 1, based
on the learned correlations, a latent road correlation graph GC

is proposed to represent the real road relationship. It can be
used in various traffic-related applications.

The contributions of our paper are:
• We propose a procedure to learn road correlation through

trajectories and generate a latent graph representation for
various downstream traffic-based application tasks.

• We evaluate our proposed latent graph on traffic flow
prediction as a downstream task, and prove it can improve
prediction accuracy through experiments on a real-world
traffic dataset.

The rest of this paper is organized as the following. Section
II introduces related work. Section III provides the notations
and definitions. The adopted methodology and model structure
will be given in section IV. In section V, the proposed model is
verified by our dataset, and the experiment results demonstrate
its practicability. A brief conclusion and several potential
directions are provided in the last section VI.

II. RELATED WORK

Graph Representation Learning. The problem of how to
make a numerical representation of a graph has long been a hot
research area in graph theories. Instead of an adjacency matrix,
to represent the non-euclidean information, many approaches
have been proposed. Classical graph embedding methods are
targeted at reducing the dimension of high-dimensional graph
data into a lower-dimensional representation while preserving
the desired properties of the original data. For example,
Principal Component Analysis (PCA) [2], Linear Discriminant
Analysis (LDA) [3], and Multidimensional Scaling (MDS) [4].
Later, statistical models are used to represent the road network,
such as Hidden Markov Models [5] that are used to model
the location transitions over the road networks. The random-
walk-based graph embedding algorithms including DeepWalk
[6] and node2vec [7] utilize random walks to learn node
representations. They sample many random paths over the
graph. These paths indicate the context of connected nodes.
The randomness of walks gives the ability to explore the graph
and capture both the global and the local structural information
by walking through neighbors. Then, probability models like
skip-gram [8] can be applied to learn node representations. The
growth of deep learning models makes it possible to model
more complex road networks and learn graph representation
efficiently, including GCN [9], GraphSAGE [10], GAT [11]
and other types of networks. They perform message pass-
ing from neighboring nodes and apply various aggregation
strategies. Based on the core architecture, hierarchical models
such as HRNR [12] are proposed to capture both structural
and functional characteristics, resulting in an effective graph
representation.

Road Network Modeling. Road network is the basic
component of the urban traffic system. There are a variety
of applications that develop on it, such as travel time estima-
tion [13], travel route recommendation [14], and destination
prediction [15]. In traffic prediction tasks, the early methods,
i.e. statistical algorithms, machine learning techniques, and
RNNs do not take the road network into consideration. Instead,
these models treat traffic sequences from different roads as
independent data streams, being unable to utilize the spatial
information in the road network graph. Therefore, the GCN-
based models utilize the adjacency matrix of the road network
to represent spatial relations. However, the adjacency matrix
cannot always precisely reflect the real-world dependencies
of the road network. Therefore, other types of matrices are
proposed. The (1) distance-based matrix is widely used whose
values are the geometrical distance between nodes. The (2)
similarity-based matrix represents the correlations between
traffic states, e.g. similarities of traffic flow patterns. And
there is also (3) dynamic matrix constructed along the training
process of traffic prediction models. For example, Graph
WaveNet [16] learns an adaptive adjacency matrix through
the end-to-end stochastic gradient descent. Furthermore, for
the reason that single graph representation may be insufficient
to model complex spatial relations, multi-graph models [17]–
[20] have also been proposed by some researchers recently.

However, few existing works consider real-world traffic in
road network modeling. On the contrary, our work attempts to
learn a latent road network representation from trajectories,
in order to capture the road correlations under real-world
traffic conditions. The latent representation is designed for
general instead of a specific traffic-related task, which can be
used in various downstream applications. To the best of our
knowledge, it is the first time that a purely trajectory-based
graph representation learning model has been proposed for
road networks.

III. PRELIMINARIES

In this section, we will introduce the notations used in this
paper, as well as definitions and problems in our task.

A. Notations

Table I gives the frequently used notations and their defini-
tions.

TABLE I: Frequently used notations.

Notation Definition

n(·) number of some entities
d(·) vector dimension
r a single road in the road network
A adjacency matrix
T trajectory
w window size
E road embedding matrix
eri embedding vector for road ri
C road correlation matrix
t time interval (or time step)
X traffic flow matrix
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Fig. 2: Model architecture for road correlation learning.

B. Problem Definition

This subsection gives the definitions of the concepts and
tasks in this paper.

Definition 1 (Road Network Graph): The road network can
be represented by a directed graph G = (R, E , A), where R =
{r1, r2, . . . , rnr

} is a finite set of roads that each ri stands for
a real road in the road network, which is an integer ID in
practice. E is the set of directed edges where (ri, rj) ∈ E
indicates that there is a directed edge from ri to rj , i.e. rj is
the downstream road in the road network. A ∈ [0, 1]nr×nr is
the adjacency matrix whose entry Ai,j is a binary value that
indicates whether there exists an edge (ri, rj) ∈ E .

Definition 2 (Trajectory): Given a road network graph G =
(R, E , A), a trajectory T = [(r1, ts1), (r2, ts2), . . . , (rl, tsl)]
is a sequence of (road, timestamp) tuples. Each tuple (ri, tsi)
specifies that the vehicle is driving on road ri at timestamp
tsi. Each consecutive pair of tuples are connected in the road
network graph, i.e. ∀i = 1, 2, . . . , l − 1, ri ̸= ri+1 and
(ri, ri+1) ∈ E .

Definition 3 (Traffic Flow): Traffic flow is defined as the
number of vehicles passing by the road during a time interval.
For a road graph G = (R, E , A), we use the traffic flow matrix
X ∈ Rnr×nt to record the traffic flow of each time interval.
For time interval t, xt = X:,t ∈ Rnr represents the traffic flow
of all roads during t.

Problem 1 (Next-hop Prediction): Given a road network
graph G = (R, E , A) and the road sequence in a trajectory
T r = [r1, r2, . . . , rl] with length l, the trajectory next-hop
prediction is to obtain a probability distribution P̂ on road set
R that best predicts the next step rl+1. In conclusion, our goal

is to build a model with parameters Θ∗ that satisfies

Θ∗ = argmin
Θ

CrossEntropy(P̂ , P ) (1)

Problem 2 (Road Correlation): Given a road network graph
G = (R, E , A) and a trajectory set T , find a road correlation
function fC with respect to T which takes two roads as input
and returns a real number fC(ri, rj) to quantify the spatial
correlation between two roads ri and rj . The value is bigger if
the two roads have a stronger correlation. The road correlation
matrix C ∈ Rnr×nr stores all the correlation values s.t. Ci,j =
fC(ri, rj).

IV. METHODOLOGY

A. Learning Road Correlations

To deal with trajectories, a simple way is to consider them
as first-order Markov processes [21], and calculate the Markov
transition probability as road correlation value by iterating on
all trajectories. But the Markov process is short in modeling
high-order transition, since the next step is only related to the
previous one, by its definition. Therefore, instead of statistical
methods that result in a fixed probability value, we take advan-
tage of deep learning to let the machine automatically learn the
transition process and acquire the high-order dependencies. To
be specific, our idea is to build a trajectory next-hop prediction
model and dynamically learn a vector representation of each
road. Then compute vector similarity as road correlation.

In the NLP area, how to obtain effective representations of
text words has long been a research focus. One-hot embedding
is a simple solution to represent each word with a one-hot vec-
tor whose dimension is equal to the size of the vocabulary. The
difference between these vectors is the word index. However,
one-hot embedding suffers from dimension curse, making the
embedding vectors very large and sparse. More importantly,
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the vectors cannot reflect the semantic relationships between
words. Therefore, word embedding technologies are proposed
to efficiently learn a fixed-length real-value vector represen-
tation for each word. And the most important advantage is
that it can catch the contextual similarity of words. If two
embedding vectors are close, which means they have high
similarity, then the two corresponding words also tend to have
similar semantic meanings.

In our work, a trajectory contains a sequence of different
road IDs, which is similar to a sentence. Therefore, it is natural
to treat each road as a word and use an embedding vector to
represent it [22]–[24]. What’s more, the road correlation can
be modeled by the contextual similarity of embedding vectors,
which can reflect the low and high-order dependency among
roads. As a result, for road ri, rj and their embedding vectors
eri and erj , we define the road correlation as the dot-product
similarity of the embeddings, i.e.

fC(ri, rj) = eri · erj (2)

To learn the embedding vectors, we propose a simple
LSTM-based model to predict the next hop of a trajectory.
The model structure is given in Figure 2. Firstly, to utilize
the trajectories, we use a sliding window strategy to generate
training samples. For trajectory T r = [r1, r2, . . . , rl], we can
obtain l − w fragments by sliding a window with size w. A
fragment is denoted as [r1, r2, . . . , rw], as well as its corre-
sponding next hop rw+1. Next, we feed the fragments into an
embedding layer that uses an embedding matrix E ∈ Rnr×dr

to map each road ID to a vector of continuous values, where
nr is the number of roads and dr is the embedding dimension.
The second layer is an LSTM to capture dependencies in
the sequence. LSTM encodes the embedded fragment into
a single hidden vector with dimension dh after w steps’
iteration. The last layer is a fully connected linear layer
that converts the hidden vector to an output length-nr vector
for classification. Then use Softmax function to generate the
probability distribution. Cross entropy is served as the loss
function. The procedure of forward propagation is given in
the following equations.

e = Embedding(r1, r2, ..., rw)

h = LSTM(er1 , er2 , ..., erw)

o = WTh+ b

P̂ = Softmax(o)

L = CrossEntropy(P̂ , P )

(3)

where W and b are parameters of the fully connected linear
layer. After training, we take out the embedding matrix E in
the embedding layer and calculate the road correlation matrix
C:

C = Softmax(ReLU(E · ET)) ∈ Rnr×nr (4)

where Cri,rj = eri · erj . Its corresponding graph is the pro-
posed latent road correlation graph GC , which is undirected.

Furthermore, we propose to refine the correlation matrix
via the idea of k-nearest neighbors (k-NN) that builds the

Fig. 3: Downstream task: traffic flow prediction.

connections between highly correlated roads and removes the
low correlations to guarantee the sparsity. The k-adjacency
matrix Ck ∈ [0, 1]nr×nr will be determined as follows:

Ckri,rj
= I(rj ∈ k-NN(ri)) (5)

where I stands for the indicator function, k-NN generates a
set of k nearest neighbor roads. The corresponding graph to
Ck is denoted as GCk

.

B. Downstream Task

To illustrate the effectiveness of our proposed GC and GCk
,

we take traffic flow prediction as a downstream task. Traffic
flow prediction is the process of analyzing urban road traffic
conditions, mining traffic patterns, and predicting road traffic
flow trends. Graph Convolutional Networks (GCNs) have been
widely applied in traffic flow prediction in recent years for
their ability to efficiently capture spatiotemporal dependencies.
There are two main types of GCN models: spectral-based and
spatial-based. In spectral-based GCNs, the graph signal is first
transformed to the spectral domain and then transformed back
after convolution. The convolution [25] operation is defined
as:

g ⋆ x = UgUTx (6)

where g is the filter, x is the graph signal and U is the matrix
of eigenvectors of the normalized graph Laplacian. In practice,
the filter is approximated by the Chebyshev polynomials of the
diagonal matrix of eigenvalues. Another approach is spatial-
based GCN, where the convolution is defined by informa-
tion propagation. The information of a node comes from its
neighboring nodes and is aggregated by different strategies.
The method is modeled by diffusion, message passing, and
attention, etc. As shown in Figure 3, the GCN prediction
models take two inputs: (1) road network, which is a graph
representation, and (2) traffic flow, which is the flow series of
each road. The output is the predicted future traffic flow.

Therefore, we select four GCN-based traffic prediction
models:

• STGCN [26] (Spatio-Temporal Graph Convolutional
Networks). STGCN is proposed in 2018, which is one
of the earliest spatiotemporal GCN models for traffic
prediction. It uses gated TCN [27] to capture temporal
dependencies and applies spectral graph convolution [9]
on the graph to model the spatial dependencies.

• DCRNN [28] (Diffusion Convolutional Recurrent Neural
Network). DCRNN is another typical GCN model that
is also proposed in 2018. Instead of spectral graph
convolution, it implements diffusion convolution through
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bidirectional random walks to capture the transition in-
formation. Temporally, it integrates diffusion convolution
into GRU and proposed an encoder-decoder structure to
enable multistep prediction.

• GWNET [16] (Graph WaveNet). Graph WaveNet is a
GCN model proposed in 2019, which remains one of
the best SOTA models nowadays. It adopts an adap-
tive/learnable graph rather than a static one that is used
in STGCN and DCRNN. By combining the original ad-
jacency matrix and the learned graph, it can rapidly boost
the prediction accuracy of traffic flow. But the adaptive
graph functionality is disabled in the experiments for the
comparison of different input graphs.

• ASTGCN [29] (Attention Based Spatial-Temporal Graph
Convolutional Networks). ASTGCN is proposed in 2019.
The model combines the spatial-temporal attention mech-
anism and the spatial-temporal convolution, including
graph convolutions in the spatial dimension and standard
convolutions in the temporal dimension, to simultane-
ously capture the dynamic spatial-temporal characteristics
of traffic data.

We will use these models to compare the performance of our
proposed latent graph with other road graphs.

V. EXPERIMENTS

A. Settings
Our dataset consists of taxi GPS points in Shenzhen, where

the main attributes are latitude, longitude, and timestamp.
Considering the size of the graph, we manually selected a
rectangular area in the CBD of Futian district. The road
network data is retrieved from OSM [30] and simplified. The
trajectories were generated by performing Fast Map Matching
(FMM) [31]. After that, the traffic flow for each road is
aggregated per 5 min interval. The description of our dataset is
given in Table II. Our dataset contains 1,751,602 trajectories
in total. After removing too long and too short ones, there
were 1,351,700 remaining. Then we put the trajectories into
24 bins according to their starting time and randomly sampled
80% data in each bin to combine as the whole dataset. Finally,
there were 1,076,886 trajectories.

For the latent road correlation learning model, the window
size for trajectory fragments generation was set as w = 5. The
data ratio for training, validation, and testing was set as 7:1:2.
Finally, we got 10,228,578 trajectory fragments for training,
and 1,455,100 for validation. For model parameters, dr = 64,
dh = 256, batch size was 256, and learning rate was 0.0001.
Adam [32] algorithm was employed to control the overall
training process, and the loss function was Cross Entropy Loss.
We performed a thorough search on vector dimensions, and
the complete parameter selection is given in Table III.

As mentioned above, we use traffic flow prediction as a
downstream task for the experiments. For traffic flow pre-
diction models, the choices of k for the generation of GCk

for the four GCN prediction models were 25, 8, 6, and
15, respectively. The experiments were performed on DL-
Traff [33], an open-source benchmark platform. As for the

TABLE II: Dataset description.

Region Shenzhen CBD
Time Range June 2020
#GPS Points 25,828,330
#Trajectories 1,751,602
#Time Intervals 8064
#Roads 492
Length of Time Interval 5 minutes

TABLE III: Model parameters.

Notation Parameter Value

Latent Correlation Graph Learning Model
w Window size 5
dr Road embedding dimension 64
dh LSTM hidden size 256
do Linear output dimension 492

Batch size 256
Early stopping epochs 10
Learning rate 0.0001

Traffic Flow Prediction Model
win Input steps 12
wout Prediction steps 12

Batch size 32
Learning rate 0.001
Early stopping epochs 10
Max training epochs 200

parameters, the input steps and prediction steps were both set
to 12. The data split ratio was also 7:1:2. The optimizer was
Adam where the learning rate was set as 0.001, and the loss
function was Mean Squared Error (MSE) Loss. The batch size
was set to 32. The training process would be early-stopped if
the validation loss was not decreasing for 10 epochs, then
the best model on validation data would be saved. Details are
provided in Table III.

Our experiments were performed on a server equipped with
an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz and an
NVIDIA GeForce RTX 2080Ti graphics card. The PyTorch
version is 1.7.1 with Python 3.7.11.

B. Baseline

To compare the effectiveness of the latent correlation graph
with other graph representations, we selected several statistical
graph representations that are frequently used in traffic predic-
tion models. We evaluate them on the above GCN models and
show the advantage of the proposed latent graph.

• GA. The 0-1 adjacency matrix of the graph.
• GOD. The Origin-destination graph. For a trajectory T ,

we set the starting road rs as the origin and the ending
road re as the destination. Then we iterate on all trajecto-
ries and increase the value of the corresponding ODrs,re

in the matrix representation of GOD.
• GCOS . Cosine similarity graph. For each pair of roads,

the cosine similarity of their traffic flow series can be
used to measure their correlation. For road ri and rj , the
corresponding value in its representation COS matrix is
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TABLE IV: Performance evaluation results.

Model Graph 3 Steps / 15 min 6 Steps / 30 min 12 Steps / 60 min
Type RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

STGCN

GA 4.44 3.46 33.00% 4.64 3.57 33.64% 5.07 3.88 36.07%
GOD 4.42 3.44 33.08% 4.72 3.61 33.73% 5.43 4.12 37.90%
GCOS 5.43 4.08 37.40% 5.74 4.39 40.47% 6.35 4.75 45.24%
GDTW 4.40 3.41 32.48% 4.63 3.57 33.70% 5.03 3.82 35.73%
GC 4.38 3.40 32.41% 4.56 3.52 33.33% 5.03 3.82 35.87%
GCk

4.42 3.43 32.70% 4.56 3.52 33.26% 5.02 3.81 35.71%

DCRNN

GA 4.47 3.46 33.01% 4.66 3.60 34.06% 5.03 3.85 35.76%
GOD 4.49 3.46 32.92% 4.71 3.61 34.16% 5.15 3.87 36.19%
GCOS 4.42 3.42 32.71% 4.60 3.53 33.46% 5.01 3.79 35.35%
GDTW 4.54 3.50 33.01% 5.07 3.78 35.30% 5.75 4.19 38.21%
GC 4.51 3.84 32.92% 4.71 3.63 34.09% 5.14 3.91 36.25%
GCk

4.40 3.39 32.38% 4.63 3.54 33.60% 4.98 3.77 35.26%

GWNET

GA 4.45 3.45 32.66% 4.69 3.61 33.97% 5.21 3.94 36.46%
GOD 4.51 3.48 32.76% 4.78 3.65 34.04% 5.45 4.07 36.81%
GCOS 4.48 3.47 33.12% 4.86 3.72 34.94% 5.48 4.12 37.78%
GDTW 4.61 3.54 33.30% 5.06 3.82 35.41% 5.72 4.22 38.26%
GC 4.48 3.45 32.82% 4.68 3.58 33.79% 5.13 3.85 35.71%
GCk

4.41 3.41 32.61% 4.57 3.51 33.31% 4.98 3.76 35.25%

ASTGCN

GA 4.65 3.57 33.76% 4.84 3.67 34.59% 5.21 3.90 36.38%
GOD 4.65 3.54 33.52% 4.86 3.67 34.68% 5.30 3.96 37.80%
GCOS 4.76 3.65 33.89% 4.90 3.73 34.35% 5.40 4.08 36.96%
GDTW 6.30 4.29 38.54% 6.61 4.47 39.77% 7.01 4.85 42.77%
GC 4.67 3.58 33.92% 4.88 3.70 34.94% 5.30 3.95 36.87%
GCk

4.61 3.54 33.46% 4.75 3.62 33.93% 5.11 3.83 35.72%

calculated by the angle cosine of the ri-th and rj-th row
in the traffic flow matrix X , i.e.

COSri,rj =
Xri,: ·Xrj ,:

|Xri,:|
∣∣Xrj ,:

∣∣ (7)

• GDTW . Dynamic time warping [34] graph. For each pair
of roads, the DTW distance can measure the correlation
of their traffic flow time series. For road ri and rj , the
corresponding value in the DTW matrix is calculated by
the DTW distance of the ri-th and rj-th row in the traffic
flow matrix X , i.e.

DTWri,rj = DTWDistance
(
Xri,:, Xrj ,:

)
(8)

C. Evaluation Metrics

Following previous studies, we use Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Per-
centage Error (MAPE) as the metrics to show the performance
of different methods. Lower errors indicate better performance.
The definitions of them are shown as the following.

MAE =
1

n

n∑
i=1

|ŷi − yi|

MAPE =
1

n

n∑
i=1

| ŷi − yi
yi

|

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

(9)

where yi is label, ŷi is prediction and n is the number of
samples.

D. Performance Analysis

The comparison for the performance of traffic flow predic-
tion is given in Table IV. To demonstrate how the prediction
accuracy varies with time, we report the metrics for 15, 30,
and 60-minute ahead prediction. From the table, we obtain the
following observations:

• Among all graphs, our proposed GC and GCk
achieve

the best performance in all cases, especially a big im-
provement compared to the original adjacency graph GA.
This illustrates that the latent road correlations can better
capture the real-world spatial correlation of the road
network.

• With the increasing of prediction steps, all models tend
to perform worse because of the difficulty in long-range
prediction. However, our proposed latent graphs still have
a considerable improvement on long-range prediction.
Especially for GWNET and ASTGCN, the improvement
on 60-minute ahead prediction is larger than short-range
prediction. This is because our latent correlation learn-
ing model uses a sequence learning method, which can
capture the high-dimensional road dependencies.

• Comparing the four models, DCRNN and GWNET have
the best overall performance. DCRNN is good at short-
range prediction, where the metrics are much lower than
other models. GWNET performs well in mid and long-
range cases.

• Comparing GC and GCk
, it can be found that GCk

has
a better performance in almost all cases. This proves the
effectiveness of k-NN filtering. However, speaking to GC ,
it is still better than other baseline graphs. For example,
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Fig. 4: Training time for each model.

in STGCN and GWNET, GC achieves the second lowest
error compared to other graphs.

In Figure 4, we report the training time per epoch for the
latent correlation graph learning model and the four GCN-
based traffic prediction models. The latent graph learning
model mainly consists of an LSTM layer, but it still trains
fast due to its simple architecture and simple loss function.
For the prediction models, we report the training time with
respect to three different input graphs, which are GA, GC ,
and GCk

. We can observe that the training time is almost not
affected by the input graphs at all. In addition, the computation
time of k-NN filtering is too small that it can be ignored. To
conclude, although our proposed latent graph GC and GCk

are
more complex, they do not increase the computation cost for
the downstream traffic prediction models.

E. Parameter Analysis

To discuss the effect of window size w in the latent graph
learning model, we train different GC using w from 2 to 10.
To avoid the influence of k-NN filtering, we skip this step
and directly use GC as the input graph to compare the traffic
flow prediction results w.r.t. different w. As shown in Figure
5, we use GWNET as an example and draw the prediction
errors. The parameter w controls how many historical steps
will be used to predict the trajectory next-hop, leading to
different road embedding matrix E, and then different GC .
If it is small, the LSTM cannot learn the long-range spatial
dependencies, which will lead to bad prediction results, es-
pecially for the 60-minute ahead prediction. Also, if it is too
large, the simple LSTM structure cannot effectively handle
such a long sequence, which will still lead to high prediction
errors. According to the figure, the prediction errors reach the
minimum values when w = 5. Thus, it is a suitable value for
the latent graph learning model.

Secondly, we analyze the choice of k when calculating GCk
,

using GWNET as an example. As shown in Figure 6, the
change of prediction errors do not have an obvious pattern
with the increase of k from 2 to 20. This is because the value
in GCk

is either zero or one, and a small change can lead

Fig. 5: GWNET-GC average prediction errors w.r.t. w.

Fig. 6: GWNET-GCk
average prediction errors w.r.t. k.

to totally different results. There is no general rule for us to
determine the value of k. Therefore, according to the figure,
we choose different k for each GCN prediction model, which
is mentioned in the experiment settings.

F. Case Study

The visualization of the six graphs used in the experiment
is given in Figure 7. We select seven roads r233, r238, r239,
r242, r243, r244, r245 to visualize the different relations among
them in the graphs. Figure 7a is the original adjacency graph
of the road network, where r233 is not connected with any
road. This is caused by the driving directions of the seven
roads, which are marked as brown arrows. However, in GC ,
r233 are highly correlated with other roads. The red edge
color stands for a very high edge weight and the same for
the next four graphs. Therefore, referring to Figure 7f, GCk

becomes completely different to GA, where the connectivity
is learned from trajectories. The GOD graph in Figure 7b is
a summary for origin-destination patterns, where r244 seems
to be a hot spot for taxis. For the GCOS graph in Figure
7c, the roads r242, r243, r244, r245 that locate on the main
roads of this region are highly related, while r238, r239 have
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Fig. 7: Visualization of input graphs for GCN.

(a) GA (b) GOD (c) GCOS

(d) GDTW (e) GC (f) GCk

smaller correlations with other roads. This is influenced by the
similarity of their flow patterns. Figure 7d shows the DTW
similarity of these roads, which is negatively related to the
DTW distance. The distance among r233, r238, r239 are small
since they have the same upstream roads according to the
driving direction. In general, the various road relations cause
different performances in the experiment, and our proposed
GC and GCk

can best reflect the real road correlations.

Figure 8a provides the visualization of road correlations
among r225 to r245. We selected these roads due to space
limitation. In the figure, instead of Softmax normalization, the
correlation values are scaled by the MinMax scaling algorithm
without the diagonal and the diagonal values are manually set
as 1. A darker color represents a higher correlation. Through
this figure, we provide two case studies on the learned latent
road correlation, which are shown in Figure 8b, and Figure 9,
respectively.

Case 1. Road Correlations of r233. For the visualization
on the road network, we select roads r155 to r245, in total 91
roads, which lie in the bottom half of the road network, to vi-
sualize the road correlations among them. The road correlation
values are taken directly from correlation graph GC , which is
also the same as row 233 in Figure 8a. As a result, the Figure
8b shows the correlations of road r233 with other roads. The
blue road at the bottom right corner stands for r233, while other
roads are drawn by the color bar according to their correlation
values. A darker color means that the corresponding road has
a higher correlation with r233, and vice versa. If a road is

in light yellow in the figure, then it does not correlate with
r233 at all. From the figure, we can observe that the nearby
roads, which are r231, r245, r242, . . . , are highly correlated
with r233. It meets our expectations because according to the
map, they have the same upstream and downstream roads as
r233, which means our model successfully captured the low-
order dependencies. What’s more, some long-distance roads,
such as r200, r181, r177, also have considerable correlations
with r233, which are the high-order dependencies captured by
the model. We investigate these two locations on the real map
and find that r233 lies in a residential area, and r200, r181, r177
lie in a shopping area. This indicates that the learned road
correlations meet the daily travel patterns of people.

Case 2. Surrounding POIs of Road r228. Referring to
Figure 8a, row 228 has the biggest row sum, i.e. r228 has the
largest correlations with other roads. We draw the position of
r228 and mark the areas nearby on the map as Figure 9, from
which we can see the surrounding Point-Of-Interests (POIs) of
r228 are Shenzhen Convention and Exhibition Center, LianHua
Middle School, Excellence Century Center, Shenzhen ICC
Tower, etc. Road r228 is also directly connected to the main
road of this region, Binhe Boulevard. These POIs demonstrate
that r228 serves an important role in the road network, causing
the high correlation values of r228. Therefore, the proposed
road correlation can also help us to specify the road importance
and let the traffic managers pay more attention to high-
correlated roads.

In conclusion, these case experiments prove not only the
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Fig. 8: Visualization of learned road correlations.

(a) Visualization for GC . (b) Road correlations of r233.

Fig. 9: Surrounding POIs of r228.

rationality of our thesis on the latent correlation graph, but
also the effectiveness of our proposed model and methods.

VI. CONCLUSION

In this paper, we first investigated the existing road network
representations in traffic applications. The shortage of them
is that the spatial dependency is expressed only by the static
relationship among roads. Therefore, we proposed a novel road
network representation that extracts dynamic road correlations
through vehicle trajectories. The trajectory next-hop prediction
model was built to learn road embeddings based on an LSTM
neural network. The latent road correlation graph GC was
calculated by the embedding matrix E in the model. Based on
that, the k-NN approach for the computing of GCk

was given.
Traffic flow prediction was used as a downstream task to verify
the proposed latent graph. Extensive experiment results proved
the effectiveness and robustness of our proposed methods.
Following, some case studies demonstrated the rationality of
the proposed latent graphs.

The proposed latent correlation graph is still not dynamic
enough, since it is learned by the trajectories over the whole
time range. To strengthen its temporality, we will consider
extending our current work to time-varying road correlations.
In addition, it is worth trying to utilize more modern sequence
prediction models for the learning of road correlations. And
to improve the robustness of the latent correlation graph, we
will investigate how to handle GPS-sparse regions and refine
our model.
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Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on May 24,2023 at 12:48:27 UTC from IEEE Xplore.  Restrictions apply. 



5467

[12] N. Wu, X. W. Zhao, J. Wang, and D. Pan, “Learning effective road
network representation with hierarchical graph neural networks,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 6–14.

[13] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task
representation learning for travel time estimation,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 1695–1704.

[14] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recom-
mendation using big trajectory data,” in 2015 IEEE 31st international
conference on data engineering. IEEE, 2015, pp. 543–554.

[15] V. Kostov, J. Ozawa, M. Yoshioka, and T. Kudoh, “Travel destination
prediction using frequent crossing pattern from driving history,” in Pro-
ceedings. 2005 IEEE Intelligent Transportation Systems, 2005. IEEE,
2005, pp. 343–350.

[16] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” arXiv preprint arXiv:1906.00121,
2019.

[17] H. Shi, Q. Yao, Q. Guo, Y. Li, L. Zhang, J. Ye, Y. Li, and Y. Liu,
“Predicting origin-destination flow via multi-perspective graph convolu-
tional network,” in 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 2020, pp. 1818–1821.

[18] K. Lee and W. Rhee, “Ddp-gcn: Multi-graph convolutional network
for spatiotemporal traffic forecasting,” Transportation Research Part C:
Emerging Technologies, vol. 134, p. 103466, 2022.

[19] Z. Wang, T. Xia, R. Jiang, X. Liu, K.-S. Kim, X. Song, and R. Shibasaki,
“Forecasting ambulance demand with profiled human mobility via
heterogeneous multi-graph neural networks,” in 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE). IEEE, 2021, pp.
1751–1762.

[20] D. Yin, R. Jiang, J. Deng, Y. Li, Y. Xie, Z. Wang, Y. Zhou, X. Song,
and J. S. Shang, “Mtmgnn: Multi-time multi-graph neural network for
metro passenger flow prediction,” GeoInformatica, pp. 1–29, 2022.

[21] M. Li, P. Tong, M. Li, Z. Jin, J. Huang, and X.-S. Hua, “Traffic
flow prediction with vehicle trajectories,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 1, 2021, pp. 294–302.

[22] R. Jiang, X. Song, Z. Fan, T. Xia, Q. Chen, Q. Chen, and R. Shibasaki,
“Deep roi-based modeling for urban human mobility prediction,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 2, no. 1, pp. 1–29, 2018.

[23] Z. Fan, X. Song, T. Xia, R. Jiang, R. Shibasaki, and R. Sakuramachi,
“Online deep ensemble learning for predicting citywide human mo-
bility,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 2, no. 3, pp. 1–21, 2018.

[24] R. Jiang, X. Song, Z. Fan, T. Xia, Z. Wang, Q. Chen, Z. Cai, and
R. Shibasaki, “Transfer urban human mobility via poi embedding over
multiple cities,” ACM Transactions on Data Science, vol. 2, no. 1, pp.
1–26, 2021.

[25] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[26] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: a deep learning framework for traffic forecasting,” in Proceedings
of the 27th International Joint Conference on Artificial Intelligence,
2018, pp. 3634–3640.

[27] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[28] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations, 2018.

[29] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[30] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[31] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating
hidden markov model with precomputation,” International Journal of
Geographical Information Science, vol. 32, no. 3, pp. 547 – 570, 2018.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[33] R. Jiang, D. Yin, Z. Wang, Y. Wang, J. Deng, H. Liu, Z. Cai,
J. Deng, X. Song, and R. Shibasaki, “Dl-traff: Survey and benchmark
of deep learning models for urban traffic prediction,” in Proceedings of
the 30th ACM International Conference on Information & Knowledge
Management, 2021, pp. 4515–4525.

[34] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, USA:, 1994, pp. 359–370.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on May 24,2023 at 12:48:27 UTC from IEEE Xplore.  Restrictions apply. 


